Algebra 1 SOL Review: Day 6

1. TestNav

2. Day #6 Overview: Variation

3. Independent Practice: Variation

TestNav: Chromebook

1. Search for TestNav using Google Chrome

2. Follow link

Algebra 1 SOL Review Session

Day: 6 Topics: Variation and Rate of Change

Key Concepts:

- Direct Variation
- Indirect (Inverse) Variation

Guided Practice:

Variation

Independent Practice:

1. A relation is shown in the table below.

	1
X	y
-6	9
-2	3
4	-6
6	-9

Which of the following statements is true?

- A. The relation is a direct variation because xy = -54
- B. The relation is a direct variation because $y = -\frac{3}{2}x$
- C. The relation is an inverse variation because xy = -54
- D. The relation is an inverse variation because $y = -\frac{3}{2}x$
- The point shown is an element of a direct variation. Plot two points other than the point shown, that are also elements of the direct variation

A relation is shown in the table below.

	i me more a
X	y
-5	-2
1/2	20
4	5 2
10	1

Which of the following statements is true?

- A. The relation is a direct variation because xy=10
- B. The relation is a direct variation because $y = \frac{2}{5}x$
- C. The relation is an inverse variation because xy = 10
- D. The relation is an inverse variation because $y = \frac{2}{5}x$
- The relation show is an inverse variation. Write the equation that represents the variation.

$$\left\{ (-3,-10), \left(\frac{1}{2},60\right), (-6,-5), \left(40,\frac{3}{4}\right) \right\}$$

$$xy = 30$$

$$y = \frac{30}{x}$$

Algebra 1 SOL Review Session

More Independent Practice

5. What is the constant of variation for the following variation?

$$\left\{ (3,4), (-6,-8), \left(\frac{3}{4},1\right), (12,16) \right\}$$

A. -12

B. $-\frac{3}{4}$

DW (. te equation

C. 12

6. y varies inversely with x. Write an equation if y = 3 when x = -2

A. xy = 6

B. $y = -\frac{3}{2}x$

C. $y = -\frac{2}{3}x$

D. xy = -6

7. The weight, w, of an object is directly proportional to its mass, m. Which equation represents this relationship?

A=Wx = Origin

A. $w = \frac{k}{m}$

B. w = k + m

C. w = km

D. w = k - m

- An experiment is conducted on a container of gas that is kept at a constant temperature.
 - When the pressure of the gas is 30 pounds per square inch, the volume is 120 in³
 - When the pressure of the gas is 40 pounds per square inch the volume is 90 in³
 - Let p represent the pressure on the gas
 - Let v represent the volume of the gas.

Which statement is true about this relationship?

- A. The volume of the gas varies directly with the pressure because v = 4p
- C. The volume of the gas varies inversely with the pressure because v = 4p
- B. The volume of the gas varies directly with the pressure because vp = 3600

00

D. The volume of the gas varies inversely with the pressure because vp = 3600

Variation

Variation (A1.8)

	Direct	Indirect (Inverse)	
Description A	Variables move in same direction As x increase, y increases As x decreases, y decreases	Variables move in opposite direction As x increases, y decreases As x decreases, y increases	
Constant of variation, k	Found by dividing y by x	Found by multiplying x and y	
Equation	y = kx	$y = \frac{k}{x}$	
Graph	.10 \$ 5 10	5 0 0 10 10 10 10 10 10 10 10 10 10 10 10	
Graph Characteristics	Must go through the origin!!! (0,0) The constant of variation, k, is also the slope of the lient (,ne	Cannot include the origin!!! $(0,0)$ Not a line	

Desmos Tip:

- Given a table? Add it to Desmos and interpret the results. (see graph characteristics)
 Compare to your answer choices by typing them into Boxes "1"-"4"
- 2. Asked to graph points on a Direct Variation? Always use (0,0) !!!!

Variation

Guided Practice

A relation is shown in the table below.

x	y	Xy
-3	-6	LX
-2.5	-7.2	18
4	4.5	18
6	3	18

Which of the following statements is true?

- A. The relation is a direct variation because xy = 18
- B. The relation is a direct variation because $y = \frac{1}{2}x$
- C. The relation is an inverse variation because xy = 18
- D. The relation is an inverse variation

because
$$y = \frac{1}{2}x$$

The point shown is an element of a direct variation. Plot two points other than the point shown, that are also elements of the direct variation

A relation is shown in the table below.

x	y	XVO	ス
5	6	30	- 1.2
8	9.6	76.8	1.2
10	12		1.2
15	18		1.2

Which of the following statements is true?

- The relation is a direct variation because xy = 30
- B. The relation is a direct variation because y = 1.2x
- The relation is an inverse variation because xy = 30
- D. The relation is an inverse variation because y = 1.2x

The relation show is an inverse variation. Write the equation that represents the variation.

$$\left\{ (3,4), \left(\frac{1}{2},24\right), (-6,-2), \left(18,\frac{2}{3}\right) \right\}$$

$$12 \quad 12 \quad 12$$

$$13 \quad 13$$

$$13 \quad 13$$

$$13 \quad 13$$

$$14 \quad 13$$

$$15 \quad 13$$

